Computer Networks 4th Ed Andrew S. Tanenbaum [Electronic resources] نسخه متنی

This is a Digital Library

With over 100,000 free electronic resource in Persian, Arabic and English

Computer Networks 4th Ed Andrew S. Tanenbaum [Electronic resources] - نسخه متنی

Andrew s. tanenbaum

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید










1.9 Summary


Computer networks can be used for numerous services, both for companies and for individuals. For companies, networks of personal computers using shared servers often provide access to corporate information. Typically they follow the client-server model, with client workstations on employee desktops accessing powerful servers in the machine room. For individuals, networks offer access to a variety of information and entertainment resources. Individuals often access the Internet by calling up an ISP using a modem, although increasingly many people have a fixed connection at home. An up-and-coming area is wireless networking with new applications such as mobile e-mail access and m-commerce.

Roughly speaking, networks can be divided up into LANs, MANs, WANs, and internetworks, with their own characteristics, technologies, speeds, and niches. LANs cover a building and operate at high speeds. MANs cover a city, for example, the cable television system, which is now used by many people to access the Internet. WANs cover a country or continent. LANs and MANs are unswitched (i.e., do not have routers); WANs are switched. Wireless networks are becoming extremely popular, especially wireless LANs. Networks can be interconnected to form internetworks.

Network software consists of protocols, which are rules by which processes communicate. Protocols are either connectionless or connection-oriented. Most networks support protocol hierarchies, with each layer providing services to the layers above it and insulating them from the details of the protocols used in the lower layers. Protocol stacks are typically based either on the OSI model or on the TCP/IP model. Both have network, transport, and application layers, but they differ on the other layers. Design issues include multiplexing, flow control, error control, and others. Much of this book deals with protocols and their design.

Networks provide services to their users. These services can be connection-oriented or connectionless. In some networks, connectionless service is provided in one layer and connection-oriented service is provided in the layer above it.

Well-known networks include the Internet, ATM networks, Ethernet, and the IEEE 802.11 wireless LAN. The Internet evolved from the ARPANET, to which other networks were added to form an internetwork. The present Internet is actually a collection of many thousands of networks, rather than a single network. What characterizes it is the use of the TCP/IP protocol stack throughout. ATM is widely used inside the telephone system for long-haul data traffic. Ethernet is the most popular LAN and is present in most large companies and universities. Finally, wireless LANs at surprisingly high speeds (up to 54 Mbps) are beginning to be widely deployed.

To have multiple computers talk to each other requires a large amount of standardization, both in the hardware and software. Organizations such as the ITU-T, ISO, IEEE, and IAB manage different parts of the standardization process.


Problems


Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8mm tapes instead of a flask of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7 gigabytes. The dog can travel to your side, wherever you may be, at 18 km/hour. For what range of distances does Bernie have a higher data rate than a transmission line whose data rate (excluding overhead) is 150 Mbps?

An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two advantages of a client-server system using a LAN.

The performance of a client-server system is influenced by two network factors: the bandwidth of the network (how many bits/sec it can transport) and the latency (how many seconds it takes for the first bit to get from the client to the server). Give an example of a network that exhibits high bandwidth and high latency. Then give an example of one with low bandwidth and low latency.

Besides bandwidth and latency, what other parameter is needed to give a good characterization of the quality of service offered by a network used for digitized voice traffic?

A factor in the delay of a store-and-forward packet-switching system is how long it takes to store and forward a packet through a switch. If switching time is 10 µsec, is this likely to be a major factor in the response of a client-server system where the client is in New York and the server is in California? Assume the propagation speed in copper and fiber to be 2/3 the speed of light in vacuum.

A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the best-case delay in response to a request?

In the future, when everyone has a home terminal connected to a computer network, instant public referendums on important pending legislation will become possible. Ultimately, existing legislatures could be eliminated, to let the will of the people be expressed directly. The positive aspects of such a direct democracy are fairly obvious; discuss some of the negative aspects.

A collection of five routers is to be connected in a point-to-point subnet. Between each pair of routers, the designers may put a high-speed line, a medium-speed line, a low-speed line, or no line. If it takes 100 ms of computer time to generate and inspect each topology, how long will it take to inspect all of them?

A group of 2n - 1 routers are interconnected in a centralized binary tree, with a router at each tree node. Router i communicates with router j by sending a message to the root of the tree. The root then sends the message back down to j. Derive an approximate expression for the mean number of hops per message for large n, assuming that all router pairs are equally likely.

A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with each of the n hosts attempting to use the channel with probability p during each slot. What fraction of the slots are wasted due to collisions?

What are two reasons for using layered protocols?

The president of the Specialty Paint Corp. gets the idea to work with a local beer brewer to produce an invisible beer can (as an anti-litter measure). The president tells her legal department to look into it, and they in turn ask engineering for help. As a result, the chief engineer calls his counterpart at the other company to discuss the technical aspects of the project. The engineers then report back to their respective legal departments, which then confer by telephone to arrange the legal aspects. Finally, the two corporate presidents discuss the financial side of the deal. Is this an example of a multilayer protocol in the sense of the OSI model?

What is the principal difference between connectionless communication and connection-oriented communication?

Two networks each provide reliable connection-oriented service. One of them offers a reliable byte stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction made? If not, give an example of how they differ.

What does ''negotiation'' mean when discussing network protocols? Give an example.

In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why not?

In some networks, the data link layer handles transmission errors by requesting damaged frames to be retransmitted. If the probability of a frame's being damaged is p, what is the mean number of transmissions required to send a frame? Assume that acknowledgements are never lost.

Which of the OSI layers handles each of the following:

(a) Dividing the transmitted bit stream into frames.

(b) Determining which route through the subnet to use.

If the unit exchanged at the data link level is called a frame and the unit exchanged at the network level is called a packet, do frames encapsulate packets or do packets encapsulate frames? Explain your answer.

A system has an n-layer protocol hierarchy. Applications generate messages of length M bytes. At each of the layers, an h-byte header is added. What fraction of the network bandwidth is filled with headers?

List two ways in which the OSI reference model and the TCP/IP reference model are the same. Now list two ways in which they differ.

What is the main difference between TCP and UDP?

The subnet of Fig. 1-25(b) was designed to withstand a nuclear war. How many bombs would it take to partition the nodes into two disconnected sets? Assume that any bomb wipes out a node and all of the links connected to it.

The Internet is roughly doubling in size every 18 months. Although no one really knows for sure, one estimate put the number of hosts on it at 100 million in 2001. Use these data to compute the expected number of Internet hosts in the year 2010. Do you believe this? Explain why or why not.

When a file is transferred between two computers, two acknowledgement strategies are possible. In the first one, the file is chopped up into packets, which are individually acknowledged by the receiver, but the file transfer as a whole is not acknowledged. In the second one, the packets are not acknowledged individually, but the entire file is acknowledged when it arrives. Discuss these two approaches.

Why does ATM use small, fixed-length cells?

How long was a bit on the original 802.3 standard in meters? Use a transmission speed of 10 Mbps and assume the propagation speed in coax is 2/3 the speed of light in vacuum.

An image is 1024 x 768 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet?

Ethernet and wireless networks have some similarities and some differences. One property of Ethernet is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with Ethernet? Discuss your answer.

Wireless networks are easy to install, which makes them inexpensive since installation costs usually far overshadow equipment costs. Nevertheless, they also have some disadvantages. Name two of them.

List two advantages and two disadvantages of having international standards for network protocols.

When a system has a permanent part and a removable part (such as a CD-ROM drive and the CD-ROM), it is important that the system be standardized, so that different companies can make both the permanent and removable parts and everything still works together. Give three examples outside the computer industry where such international standards exist. Now give three areas outside the computer industry where they do not exist.

Make a list of activities that you do every day in which computer networks are used. How would your life be altered if these networks were suddenly switched off?

Find out what networks are used at your school or place of work. Describe the network types, topologies, and switching methods used there.

The ping program allows you to send a test packet to a given location and see how long it takes to get there and back. Try using ping to see how long it takes to get from your location to several known locations. From thes data, plot the one-way transit time over the Internet as a function of distance. It is best to use universities since the location of their servers is known very accurately. For example, berkeley.edu is in Berkeley, California, mit.edu is in Cambridge, Massachusetts, vu.nl is in Amsterdam, The Netherlands, www.usyd.edu.au is in Sydney, Australia, and www.uct.ac.za is in Cape Town, South Africa.

Go to IETF's Web site, www.ietf.org, to see what they are doing. Pick a project you like and write a half-page report on the problem and the proposed solution.

Standardization is very important in the network world. ITU and ISO are the main official standardization organizations. Go to their Web sites, www.itu.org and www.iso.org, respectively, and learn about their standardization work. Write a short report about the kinds of things they have standardized.

The Internet is made up of a large number of networks. Their arrangement determines the topology of the Internet. A considerable amount of information about the Internet topology is available on line. Use a search engine to find out more about the Internet topology and write a short report summarizing your findings.



/ 81