امروزه فناوري نانو به عنوان يك چالش اصلي علمي و صنعتي پيش روي جهانيان است. در سال هاي اخير مشخصات سايز محصولات براي مواد پيشرفته به شكل بسيار چشمگيري ريز شده است كه در بعضي اوقات به محدوده نانو سايز مي رسد لذا استفاده از نانوتكنولوژي در رسيدن به اين هدف بسيار مفيد و كارا خواهد بود. در نانوتكنولوژي شما قادر به ايجاد ساختارهايي از مواد خواهيد بود كه در طبيعت موجود نبوده و شيمي مرسوم نيز قادر به ايجاد آن مي باشد. برخي از مزاياي اين فناوري را مي توان توليد مواد قوي تر، قابل برنامه ريزي و كاهش هزينه هاي فعاليت برشمرد. تعريف نانوفناوري بر اساس برنامه پيشگامي ملي آمريكا (يك برنامه تحقيق و توسعه دولتي جهت هماهنگي ميان تلاش هاي صورت گرفته از طرف حوزه هاي علمي، مهندسي و فناوري) عبارتست از: • توسعه علمي و تحقيقاتي در سطوح اتمي، مولكولي يا ماكرومولكولي، در محدوده اندازه هاي طولي از تا نانومتر. • ساخت و كاربرد ساختارها، تجهيزات و سيستم هايي كه به علت ابعاد كوچك و يا متوسط خود داراي ويژگي ها و كاركردهاي نوين و منحصر به فردي هستند. • توانايي كنترل و اداره كردن [مواد و فرآيندها] در ابعاد اتمي نانوفناوري اشاره به تحقيقات و توسعه صنعتي در سطوح اتمي، مولكولي و ماكرومولكولي دارد. اين تحقيقات با هدف ايجاد و بهره برداري از ساختارها و سيستم هايي صورت مي گيرند كه به واسطه اندازه كوچك خود داراي خواص و كاربردهاي منحصر به فردي باشند. تفاوت اصلي فناوري نانو با فناوري هاي ديگر در مقياس مواد و ساختارهايي است كه در اين فناوري مورد استفاده قرار مي گيرند. در حقيقت اگر بخواهيم تفاوت اين فناوري را با فناوري هاي ديگر به صورت قابل ارزيابي بيان نماييم، مي توانيم وجود عناصر پايه را به عنوان يك معيار ذكر كنيم. عناصر پايه در حقيقت همان عناصر نانومقياسي هستند كه خواص آنها در حالت نانومقياس با خواص شان در مقياس بزرگتر تفاوت مي كند. به علت توسعه خواص پودرهاي بسيار ريز نظير شيمي سطح، خواص تراكم، مقاومت، خواص نوري و واكنش هاي سينيتيكي و همچنين افزايش تقاضا براي پودرهاي ريز در صنايع، خردايش بسيار ريزتر در بسياري از رشته ها مانند كاني ها، مواد سراميكي، رنگدانه ها، محصولات شيميايي، ميكروارگانيسم ها، داروشناسي و كاغذسازي استفاده مي شود. به عنوان مثال، پودر سنگ آهك به عنوان پركننده در پلاستيك ها جهت بهبود مقاومت در برابر گرما، سختي، استحكام رنگ و پايداري مواد به كار گرفته مي شود. اين ماده همچنين در كاغذسازي به عنوان پوشش و پركننده جهت توليد كاغذهاي روشن با مقاومت مناسب در برابر زردي و كهنگي و همچنين جهت سنگ آهك قابليت چاپ، پذيرش جوهر و صافي و همواري كاغذ كاربرد فراواني دارد. لذا خردايش بسيار ريز پودر سنگ آهك، به شكل وسيعي در نقاشي، رنگدانه ها، مواد غذايي، پلاستيك ها و صنايع داروشناسي، به عنوان مواد پركننده كاربرد دارد.
تاريخچه فناوري نانو
در طول تاريخ بشر از زمان يونان باستان، مردم و به خصوص دانشمندان آن دوره بر اين باور بودند كه مواد را مي توان آنقدر به اجزاي كوچك تقسيم كرد تا به ذراتي رسيد كه خردناشدني هستند و اين ذرات بنيان مواد را تشكيل مي دهند، شايد بتوان دموكريتوس فيلسوف يوناني را پدر فناوري و علوم نانو دانست چرا که در حدود سال قبل از ميلاد مسيح او اولين كسي بود كه واژه اتم را كه به معني تقسيم نشدني در زبان يوناني است براي توصيف ذرات سازنده مواد به كار برد. با تحقيقات و آزمايش هاي بسيار، دانشمندان تاکنون نوع اتم و تعداد زيادي ايزوتوپ كشف كرده اند. آنها همچنين پي برده اند كه اتم ها از ذرات كوچكتري مانند كوارك ها و لپتون ها تشكيل شده اند. با اين حال اين كشف ها در تاريخ پيدايش اين فناوري پيچيده زياد مهم نيست. نقطه شروع و توسعه اوليه فناوري نانو به طور دقيق مشخص نيست. شايد بتوان گفت كه اولين نانوتكنولوژيست ها شيشه گران قرون وسطايي بوده اند كه از قالب هاي قديمي براي شكل دادن شيشه هايشان استفاده مي كرده اند. البته اين شيشه گران نمي دانستند كه چرا با اضافه كردن طلا به شيشه رنگ آن تغيير مي كند. در آن زمان براي ساخت شيشه هاي كليساهاي قرون وسطايي از ذرات نانومتري طلا استفاده مي شده است و با اين كار شيشه هاي رنگي بسيار جذابي به دست مي آمده است. اين قبيل شيشه ها هم اكنون در بين شيشه هاي بسيار قديمي يافت مي شوند. رنگ به وجودآمده در اين شيشه ها برپايه اين حقيقت استوار است كه مواد با ابعاد نانو داراي همان خواص مواد با ابعاد ميكرو نمي باشند. در واقع يافتن مثال هايي براي استفاده از نانو ذرات فلزي چندان سخت نيست. رنگدانه هاي تزييني جام مشهور ليکرگوس در روم باستان (قرن چهارم بعد از ميلاد) نمونه اي از آنهاست. اين جام هنوز در موزه بريتانيا قرار دارد و بسته به جهت نور تابيده به آن رنگ هاي متفاوتي دارد. نور انعکاس يافته از آن سبز است ولي اگر نوري از درون آن بتابد، به رنگ قرمز ديده مي شود. آناليز اين شيشه حکايت از وجود مقادير بسيار اندکي از بلورهاي فلزي ريز (nm) دارد، که حاوي نقره و طلا با نسبت مولي تقريبا به يك است حضور اين نانوبلورها باعث رنگ ويژه جام ليکرگوس گشته است. در سال ريچارد فاينمن مقاله اي را درباره قابليت هاي فناوري نانو در آينده منتشر ساخت. باوجود موقعيت هايي كه توسط بسياري تا آن زمان كسب شده بود، ريچارد. پي. فاينمن را به عنوان پايه گذار اين علم مي شناسند. فاينمن كه بعدها جايزه نوبل را در فيزيك دريافت كرد در آن سال در يک مهماني شام كه توسط انجمن فيزيک آمريكا برگزار شده بود، سخنراني كرد و ايده فناوري نانو را براي عموم مردم آشكار ساخت. عنوان سخنراني وي «فضاي زيادي در سطوح پايين وجود دارد» بود. سخنراني او شامل اين مطلب بود كه مي توان تمام دايره المعارف بريتانيكا را بر روي يك سنجاق نگارش كرد. يعني ابعاد آن به اندازه / ابعاد واقعيش كوچك مي شود. او همچنين از دوتايي كردن اتم ها براي كاهش ابعاد كامپيوترها سخن گفت (در آن زمان ابعاد كامپيوترها بسيار بزرگتر از ابعاد كنوني بودند اما او احتمال مي داد كه ابعاد آنها را بتوان حتي از ابعاد كامپيوترهاي كنوني نيز كوچكتر كرد. او همچنين در آن سخنراني توسعه بيشتر فناوري نانو را پيش بيني كرد.
كاربرد فناوري نانو
فناوري نانو به سه زير شاخه بالا به پايين، پايين به بالا (روش هاي ساخت) و نانو محاسبات (روش هاي مدل سازي و شبيه سازي) تقسيم بندي مي شوند كه هر كدام از اين روش ها نيز به شاخه هاي گوناگون تقسيم مي شوند. كاهش اندازه ميكرو ساختاري مواد موجود مي تواند تاثيرات بزرگي را به وجود آورد. مثلاً همان طور كه اندازه دانه يا كريستال در يك فلز به سمت نانو مقياس حركت مي كند، نسبت اتم هاي موجود بر روي مرزهاي دانه هاي اين جسم جامد افزايش پيدا مي كند و آنها رفتاري كاملاً متفاوت از اتم هايي كه روي مرز نيستند بروز مي دهند. رفتار آنها شروع به تحت تاثير قرار دادن رفتار ماده مي كنند و در نتيجه در فلزات، افزايش استحكام، سختي، مقاومت الكتريكي، ظرفيت حرارتي ويژه، بهبود انبساط حرارتي و خواص مغناطيسي و كاهش رسانايي حرارتي ديده مي شود. در اختلاط شديد از انواع همزن هاي دور بالا، همگن سازها، آسياب هاي كلوييدي و غيره مي توان براي تهيه قطرات ريز يك مايع در مايع ديگر (نانو كپسول ها) سود جست. البته عوامل فعال سطحي (خودآرايي) نقش كليدي در ايجاد و پايداري اين نانو امولسيون ها دارد. در روش استفاده از آسياب گلوله اي با آسيا و يا پودر كردن مي توان براي ايجاد نانو ذرات استفاده كرد. خواص نانو ذرات حاصل تحت تاثير نوع ماده آسياكننده، زمان آسيا و محيط اتمسفري آن قرار مي گيرد. از اين روش مي توان براي توليد نان ذراتي از مواد استفاده كرد كه با روش هاي ديگر به آساني توليد نمي شوند. البته آلودگي حاصل از مواد محيط آسياب كننده هم مي تواند مشكل ساز باشد. نانو ذرات در حال حاضر از طيف وسيعي از مواد ساخته مي شوند. معمول ترين آنها نانو ذرات سراميكي بوده كه به بخش سراميك هاي اكسيد فلزي (نظير اكسيدهاي تيتانيوم، روي، آلومينيوم و آهن و نانو ذرات سيليكاتي (عموماً به شكل ذرات نانو مقياسي رس) تقسيم مي شود. طبق تعريف حداقل بايد يكي از ابعاد آنها كمتر از نانومتر باشد. نانو ذرات سراميكي فلزي يا اكسيد فلزي معمولاً اندازه يكساني از دو يا سه نانو متر تا نانو متر - در هر سه بعد دارند شايد شما انتظار داريد كه چنين ذرات كوچكي در هوا معلق بمانند اما در واقع آنها به وسيله نيروهاي الكترواستاتيك به يكديگر چسبيده و به شكل پودر بسيار ريزي رسوب مي كنند. كاربردهاي بازارپسند اين نانو مواد بسيار زياد است. خردايش يك فرآيند منحصر به فردي است كه در محدوده وسيعي از كابردهاي صنعتي جهت توليد ذرات ريز كاربرد دارد اما بسيار مشكل است كه توسط خردايش، ذرات را به سايز بسيار ريز تبديل كنيم و علاوه بر اين، خردايش بسيار ريز به علت ظرفيت پايين آسيا و مصرف انرژي بالا، بسيار گران است. بنابراين افزايش در كارآيي خردايش، تاثير مفيد اساسي بر روي مصرف انرژي خردايش و هزينه خواهد داشت. براي رسيدن به اين هدف، انتخاب آسياي مناسب و عمليات در شرايط بهينه آسيا كردن لازم و ضروري به نظر مي رسد. در اين جهت از آسياي سانتريفيوژ استفاده مي شود كه، يك آسياي با قدرت بالا بوده و مي تواند جهت خردايش بسيار ريز مواد مورد استفاده قرار گيرد. اين آسيا با به كارگيري نيروهاي سانتريفيوژ توليد شده توسط دوران محور لوله آسيا در يك چرخه فعاليت مي كند. همچنين در فناوري نانو ميتوان توسط فرآيند شيمي مکانيکي ترکيبات اكسي فلورايد لانتانيوم (Loaf) را در حد سايز بسيار ريز نانو به دست آورد. اكسي فلورايد لانتانيوم مي تواند يك فعال كننده، ماده ميزبان فسفر، كاتاليزور براي جفت شدن اكسايشي متان و يا اكسايش هيدروژن زدايي متان باشد. اين ماده توسط دو روش مهم تركيب مي شود. اولين شيوه، فرآيند تركيبي حالت جامد تحت فشار و حرارت بالا بوده و فعل و انفعالات مستقيمي را در بين مواد موجب مي شود و ديگري فرآيند electro_winning است كه جهت آماده سازي به يك محلول آبدار و يا يك نمك گداخته نياز دارد. در اين روش هاي تركيبي، از فلورايد لانتانيوم يا آمونيوم فلورايد به عنوان يك منبع فلورايد مورد استفاده قرار مي گيرد كه طبعاً داراي هزينه بالايي نيز است. روش جايگزين ديگر جهت تركيب مواد كاربردي بدون استفاده از گرما مي باشد. در اين روش تنها از يك دستگاه خردايش با قدرت بالا نظير آسياي Planetary استفاده مي شود، به طوري كه در اين روش مسائل آلودگي هاي زيست محيطي به حداقل رسيده و دليل آن عدم وجود مواد مضري چون فلوئورين در گازهاي خروجي آن است. جهت جلوگيري از وجود ناخالصي هاي ناشي از پوشش گلوله هاي مورد استفاده در آسيا در زمان خردايش، از گلوله هاي از جنس زيركنيوم استفاده مي شود كه در مقابل سائيدگي مقاوم است. تهيه: مهسا شهبازي