l xmlns="http://www.w3.org/1999/l">
Bonarini,
A. (
1996 ). Evolutionary learning of fuzzy rules: Competition and cooperation. In
W.
Pedrycz (Ed.), Fuzzy Modelling: Paradigms and Practice.
Norwell, MA :
Kluwer Academic .
Bot,
M. (
1999 ). Application of genetic programming to induction of linear classification trees.
Amsterdam, Netherlands :
Vrije Universiteit . (
Final Term Project Report )
Browne,
C.,
Dntsch,
I. &
Gediga,
G. (
1998 ). IRIS revisited: A comparison of discriminant and enhanced rough set data analysis. In
L.
Polkowski &
A.
Skowron (Eds.), Rough Sets in Knowledge Discovery (
vol. 2 ,
pp. 345–368 ).
Heidelberg, Germany :
Physica Verlag .
Darwin,
C. (
1864 ). On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life.
Cambridge, UK :
Cambridge University Press .
Duch,
W.,
Adamczak,
R. &
Grabczewski,
K. (
2000 ). A new methodology of extraction, optimisation and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks,
11 (
2 ).
Engelbrecht,
A. P.,
Rouwhorst,
S. E., &
Schoeman,
L. (
2001 ). A building block approach to genetic programming for rule discovery. In
H.
Abbass,
R.
Sarkar &
C.
Newton (Eds.), Data Mining: A Heuristic Approach.
Hershey, PA :
Idea Group .
Fayyad,
U.,
Piatetsky-Shapiro,
U. G.,
Smyth,
P., &
Uthurusamy,
R. (
1996 ). Advances in Knowledge Discovery and Data Mining.
Menlo Park, CA :
AAAI/MIT Press .
Fisher,
R. A. (
1936 ). The use of multiple measurements in taxonomic problems. Annals of Eugenics (
pp. 179–188 ).
Fuchs,
M. (
1998 ). Crossover versus mutation: An empirical and theoretical case study. In Proceedings of the 3rd Annual Conference on Genetic Programming.
San Francisco, CA :
Morgan Kauffman .
Halgamuge,
S. K. &
Glesner,
M. (
1994 ). Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets and Systems,
65 ,
1–12 .
Haykin,
S. (
1999 ). Neural Networks (
2nd ed. ).
Englewood Cliffs, NJ :
Prentice Hall .
Jagielska,
I.,
Matthews,
C. &
Whitfort,
T. (
1996 ). The application of neural networks, fuzzy logic, genetic algorithms and rough sets to automated knowledge acquisition. In Proceedings of the 4th International Conference on Soft Computing (IIZUKA'96), Japan. (
vol. 2 ,
pp. 565–569 ).
Johansson,
E. M.,
Dowla,
F. U., &
Goodman,
D. M. (
1992 ). Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. International Journal of Neural Systems,
2 (
4 ),
291–301 .
Kasabov,
N. (
1996 ). Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering.
Cambridge, MA :
MIT Press .
Koza,
J. (
1992 ). Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, MA :
MIT Press .
Koza,
J. (
1994 ). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA :
MIT Press .
Lippmann,
R. P. (
1987 ). An introduction to computing with neural nets. IEEE ASSP Magazine.
Luke,
S. &
Spector,
L. (
1998 ). A revised comparison of crossover and mutation in genetic programming. In Proceedings of the 3rd Annual Conference on Genetic Programming.
San Francisco, CA :
Morgan Kauffman .
Martnez,
A. &
Goddard,
J. (
2001 ). Definicin de una red neuronal para clasificacin por medio de un programa evolutivo. Mexican Journal of Biomedical Engineering,
22 ,
4–11 .
Montana,
D. J. (
1995 ). Strongly typed genetic programming. Evolutionary Computation,
3 (
2 ),
199–200 .
Nauck,
D.,
Nauck,
U. &
Kruse,
R. (
1996 ). Generating classification rules with the neuro-fuzzy system NEFCLASS. Proceedings of the Biennal Conference of the North American Fuzzy Information Processing Society (NAFIPS'96),
Berkeley, California .
Rabual Dopico,
J. R. (
1999 ). Entrenamiento de redes de neuronas artificiales mediante algoritmos genticos.
A Corua, Spain :
Universidad da Corua, Facultad de Informtica . (
Graduate Thesis )
SAS/STAT user's guide (
Release 6.03 ed. ). (
1998 ).
Cary, NC :
SAS Institute Inc .
Wong,
M. L. &
Leung,
K. S. (
2000 ). Data Mining Using Grammar Based Genetic Programming and Applications.
Norwell, MA :
Kluwer Academic .