The Importance of Modeling
If you want to build a dog house, you can pretty much start with a pile of lumber, some nails, and a few basic tools such as a hammer, saw, and tape measure. In a few hours, with little prior planning, you'll likely end up with a dog house that's reasonably functional, and you can probably do it with no one else's help. As long as it's big enough and doesn't leak too much, your dog will be happy. If it doesn't work out, you can always start over, or get a less demanding dog.If you want to build a house for your family, you can start with a pile of lumber, some nails, and a few basic tools, but it's going to take you a lot longer, and your family will certainly be more demanding than the dog. In this case, unless you've already done it a few dozen times before, you'll be better served by doing some detailed planning before you pound the first nail or lay the foundation. At the very least, you'll want to make some sketches of how you want the house to look. If you want to build a quality house that meets the needs of your family and of local building codes, you'll need to draw some blueprints as well, so that you can think through the intended use of the rooms and the practical details of lighting, heating, and plumbing. Given these plans, you can start to make reasonable estimates of the amount of time and materials this job will require. Although it is humanly possible to build a house yourself, you'll find it is much more efficient to work with others, possibly subcontracting out many key work products or buying pre-built materials. As long as you stay true to your plans and stay within the limitations of time and money, your family will most likely be satisfied. If it doesn't work out, you can't exactly get a new family, so it is best to set expectations early and manage change carefully.If you want to build a high-rise office building, it would be infinitely stupid for you to start with a pile of lumber, some nails, and a few basic tools. Because you are probably using other people's money, they will insist upon having input into the size, shape, and style of the building. Often, they will change their minds, even after you've started building. You will want to do extensive planning, because the cost of failure is high. You will be just a part of a much larger group responsible for developing and deploying the building, so the team will need all sorts of blueprints and models to communicate with one another. As long as you get the right people and the right tools and actively manage the process of transforming an architectural concept into reality, you will likely end up with a building that will satisfy its tenants. If you want to keep constructing buildings, then you will want to be certain to balance the desires of your tenants with the realities of building technology, and you will want to treat the rest of your team professionally, never placing them at any risk or driving them so hard that they burn out.Curiously, a lot of software development organizations start out wanting to build high rises but approach the problem as if they were knocking out a dog house.Sometimes, you get lucky. If you have the right people at the right moment and if all the planets align properly, then you might, just might, get your team to push out a software product that dazzles its users. Typically, however, you can't get all the right people (the right ones are often already overcommitted), it's never the right moment (yesterday would have been better), and the planets never seem to align (instead, they keep moving out of your control). Given the increasing demand to develop software quickly, development teams often fall back on the only thing they really know how to do wellpound out lines of code. Heroic programming efforts are legend in this industry, and it often seems that working harder is the proper reaction to any crisis in development. However, these are not necessarily the right lines of code, and some projects are of such a magnitude that even adding more hours to the workday is not enough to get the job done.If you really want to build the software equivalent of a house or a high rise, the problem is more than just a matter of writing lots of softwarein fact, the trick is in creating the right software and in figuring out how to write less software. This makes quality software development an issue of architecture and process and tools. Even so, many projects start out looking like dog houses but grow to the magnitude of a high rise simply because they are a victim of their own success. There comes a time when, if there was no consideration given to architecture, process, or tools, the dog house, now grown into a high rise, collapses of its own weight. The collapse of a dog house may annoy your dog; the failure of a high rise will materially affect its tenants.Unsuccessful software projects fail in their own unique ways, but all successful projects are alike in many ways. There are many elements that contribute to a successful software organization; one common thread is the use of modeling.Modeling is a proven and well-accepted engineering technique. We build architectural models of houses and high rises to help their users visualize the final product. We may even build mathematical models to analyze the effects of winds or earthquakes on our buildings.Modeling is not just a part of the building industry. It would be inconceivable to deploy a new aircraft or an automobile without first building models from computer models to physical wind tunnel models to full-scale prototypes. New electrical devices, from microprocessors to telephone switching systems, require some degree of modeling in order to better understand the system and to communicate those ideas to others. In the motion picture industry, storyboarding, which is a form of modeling, is central to any production. In the fields of sociology, economics, and business management, we build models so that we can validate our theories or try out new ones with minimal risk and cost.What, then, is a model? Simply put,
A model is a simplification of reality.
A model provides the blueprints of a system. Models may encompass detailed plans, as well as more general plans that give a 30,000-foot view of the system under consideration. A good model includes those elements that have broad effect and omits those minor elements that are not relevant to the given level of abstraction. Every system may be described from different aspects using different models, and each model is therefore a semantically closed abstraction of the system. A model may be structural, emphasizing the organization of the system, or it may be behavioral, emphasizing the dynamics of the system.Why do we model? There is one fundamental reason.
We build models so that we can better understand the system we are developing.
Through modeling, we achieve four aims.
How UML addresses these four things is discussed in Chapter 2 . |
- Models help us to visualize a system as it is or as we want it to be.
- Models permit us to specify the structure or behavior of a system.
- Models give us a template that guides us in constructing a system.
- Models document the decisions we have made.
We build models of complex systems because we cannot comprehend such a system in its entirety.
There are limits to the human ability to understand complexity. Through modeling, we narrow the problem we are studying by focusing on only one aspect at a time. This is essentially the approach of "divide-and-conquer" that Edsger Dijkstra spoke of years ago: Attack a hard problem by dividing it into a series of smaller problems that you can solve. Furthermore, through modeling, we amplify the human intellect. A model properly chosen can enable the modeler to work at higher levels of abstraction.Saying that one ought to model does not necessarily make it so. In fact, a number of studies suggest that most software organizations do little if any formal modeling. Plot the use of modeling against the complexity of a project and you'll find that the simpler the project, the less likely it is that formal modeling will be used.The operative word here is "formal." In reality, in even the simplest project, developers do some amount of modeling, albeit very informally. A developer might sketch out an idea on a blackboard or a scrap of paper to visualize a part of a system, or the team might use CRC cards to work through a scenario or the design of a mechanism. There's nothing wrong with any of these models. If it works, by all means use it. However, these informal models are often ad hoc and do not provide a common language that can easily be shared with others. Just as there exists a common language of blueprints for the construction industry, a common language for electrical engineering, and a common language for mathematical modeling, so too can a development organization benefit by using a common language for software modeling.Every project can benefit from some modeling. Even in the realm of disposable software, where it's sometimes more effective to throw away inadequate software because of the productivity offered by visual programming languages, modeling can help the development team better visualize the plan of their system and allow them to develop more rapidly by helping them build the right thing. The more complex your project, the more likely it is that you will fail or that you will build the wrong thing if you do no modeling at all. All interesting and useful systems have a natural tendency to become more complex over time. So, although you might think you don't need to model today, as your system evolves you will regret that decision, after it is too late.