Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] - نسخه متنی

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید










Chapter notes


VanLoan's book [303] is an outstanding treatment of the Fast Fourier Transform. Press, Flannery, Teukolsky, and Vetterling [248, 249] have a good description of the Fast Fourier Transform and its applications. For an excellent introduction to Oppenheim and Schafer [232] and Oppenheim and Willsky [233]. The Oppenheim and Schafer book also shows how to handle cases in which n is not an integer power of 2.

Fourier analysis is not limited to 1-dimensional data. It is widely used in image processing to analyze data in 2 or more dimensions. The books by Gonzalez and Woods [127] and Pratt [246] discuss multdimensional Fourier Transform and their use in image processing, and books by Tolimieri, An, and Lu [300] and Van Loan [303] discuss the mathematics of multidimensional Fast Fourier Transforms.

Cooley and Tukey [68] are widely credited with devising the FFT in the 1960's. The FFT had in fact been discovered many times previously, but its importance was not fully realized before the advent of modern digitial computers. Although Press, Flannery, Teukolsky, and Vetterling attribute the origins of the method of Runge and König in 1924, an article by Heideman, Johnson, and Burrus [141] traces the history of the FFT as far back as C. F. Gauss in 1805.



/ 292