Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] نسخه متنی
لطفا منتظر باشید ...
صفحه اصلی تبیان
شبکه اجتماعی
مشاوره
آموزش
فیلم
صوت
تصاویر
حوزه
کتابخانه
دانلود
وبلاگ
فروشگاه اینترنتی
ورود
✕
فارسی
کردی
العربیه
اردو
Türkçe
Русский
English
Français
✕
کانال فیلم من
تبیان من
فایلهای من
کتابخانه من
پنل پیامکی
وبلاگ من
اینجــــا یک کتابخانه دیجیتالی است
با بیش از
100000
منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی
جستجو بر اساس ...
همه
عنوان
پدیدآور
موضوع
یادداشت
تمام متن
اصطلاحنامه
مجموعه ها
مرورالفبایی
لغت نامه دهخدا
➟
جستجو در لغت نامه
بیشتر
کتابخانه شخصی
پرسش از کتابدار
ارسال منبع
Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] - نسخه متنی
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
|
نمايش فراداده
،
افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
میخواهم بخوانم
درحال خواندن
خوانده شده
ارسال به دوستان
آدرس پست الکترونیک گیرنده :
آدرس پست الکترونیک فرستنده :
نام و نام خانوارگی فرستنده :
پیغام برای گیرنده ( حداکثر 250 حرف ) :
کد امنیتی را وارد نمایید
ارسال
جستجو در متن کتاب
بیشتر
تنظیمات قلم
فونت
پیش فرض
تیتر
کودک
میترا
نازنین
اندازه قلم
+
-
پیش فرض
حالت نمایش
روز
نیمروز
شب
➟
جستجو در لغت نامه
بیشتر
لیست موضوعات
Sitemap
Table of Contents
BackCover
Introduction to Algorithms, Second Edition
Preface
To the student
To the professional
To our colleagues
Changes for the second edition
Web site
Acknowledgments for the first edition
Acknowledgments for the second edition
Part I: Foundations
Chapter 1: The Role of Algorithms in Computing
1.2 Algorithms as a technology
Chapter notes
Chapter 2: Getting Started
2.2 Analyzing algorithms
2.3 Designing algorithms
Chapter notes
Chapter 3: Growth of Functions
3.1 Asymptotic notation
3.2 Standard notations and common functions
Chapter notes
Chapter 4: Recurrences
Technicalities
4.1 The substitution method
4.2 The recursion-tree method
4.3 The master method
4.4: Proof of the master theorem
Chapter notes
Chapter 5: Probabilistic Analysis and Randomized Algorithms
5.2 Indicator random variables
5.3 Randomized algorithms
5.4 Probabilistic analysis and further uses of indicator random variables
Chapter notes
Part II: Sorting and Order Statistics
Chapter 6: Heapsort
6.1 Heaps
6.2 Maintaining the heap property
6.3 Building a heap
6.4 The heapsort algorithm
6.5 Priority queues
Chapter notes
Chapter 7: Quicksort
7.2 Performance of quicksort
7.3 A randomized version of quicksort
7.4 Analysis of quicksort
Chapter Notes
Chapter 8: Sorting in Linear Time
8.1 Lower bounds for sorting
8.2 Counting sort
8.3 Radix sort
Chapter notes
Chapter 9: Medians and Order Statistics
9.1 Minimum and maximum
9.2 Selection in expected linear time
9.3 Selection in worst-case linear time
Chapter notes
Part III: Data Structures
Chapter 10: Elementary Data Structures
10.2 Linked lists
10.3 Implementing pointers and objects
10.4 Representing rooted trees
Chapter notes
Chapter 11: Hash Tables
11.1 Direct-address tables
11.2 Hash tables
11.3 Hash functions
11.4 Open addressing
11.5 Perfect hashing
Chapter notes
Chapter 12: Binary Search Trees
12.1 What is a binary search tree?
12.2 Querying a binary search tree
12.3 Insertion and deletion
12.4 Randomly built binary search trees
Chapter notes
Chapter 13: Red-Black Trees
13.2 Rotations
13.3 Insertion
13.4 Deletion
Chapter notes
Chapter 14: Augmenting Data Structures
14.2 How to Augment a Data Structure
14.3 Interval Trees
Chapter Notes
Part IV: Advanced Design and Analysis Techniques
Chapter 15: Dynamic Programming
15.1 Assembly-line scheduling
15.2 Matrix-chain multiplication
15.3 Elements of dynamic programming
15.4 Longest common subsequence
15.5 Optimal binary search trees
Chapter notes
Chapter 16: Greedy Algorithms
16.1 An activity-selection problem
16.2 Elements of the greedy strategy
16.3 Huffman codes
16.4 Theoretical foundations for greedy methods
16.5 A task-scheduling problem
Chapter notes
Chapter 17: Amortized Analysis
17.1 Aggregate analysis
17.2 The accounting method
17.3 The potential method
17.4 Dynamic tables
Chapter notes
Part V: Advanced Data Structures
Chapter 18: B-Trees
Data structures on secondary storage
18.1 Definition of B-trees
18.2 Basic operations on B-trees
18.3 Deleting a key from a B-tree
Chapter notes
Chapter 19: Binomial Heaps
19.1 Binomial trees and binomial heaps
19.2 Operations on binomial heaps
Chapter notes
Chapter 20: Fibonacci Heaps
20.1 Structure of Fibonacci heaps
20.2 Mergeable-heap operations
20.3 Decreasing a key and deleting a node
20.4 Bounding the maximum degree
Chapter notes
Chapter 21: Data Structures for Disjoint Sets
21.2 Linked-list representation of disjoint sets
21.3 Disjoint-set forests
21.4 Analysis of union by rank with path compression
Chapter notes
Part VI: Graph Algorithms
Chapter 22: Elementary Graph Algorithms
22.2 Breadth-first search
22.3 Depth-first search
22.4 Topological sort
22.5 Strongly connected components
Chapter notes
Chapter 23: Minimum Spanning Trees
23.1 Growing a minimum spanning tree
23.2 The algorithms of Kruskal and Prim
Chapter notes
Chapter 24: Single-Source Shortest Paths
Variants
Optimal substructure of a shortest path
Negative-weight edges
Cycles
Representing shortest paths
Relaxation
Properties of shortest paths and relaxation
Chapter outline
24.1 The Bellman-Ford algorithm
24.2 Single-source shortest paths in directed acyclic graphs
24.3 Dijkstra''s algorithm
24.4 Difference constraints and shortest paths
24.5 Proofs of shortest-paths properties
Chapter notes
Chapter 25: All-Pairs Shortest Paths
Chapter outline
25.1 Shortest paths and matrix multiplication
25.2 The Floyd-Warshall algorithm
25.3 Johnson''s algorithm for sparse graphs
Chapter notes
Chapter 26: Maximum Flow
26.1 Flow networks
26.2 The Ford-Fulkerson method
26.3 Maximum bipartite matching
26.4 Push-relabel algorithms
26.5 The relabel-to-front algorithm
Chapter notes
Part VII: Selected Topics
Chapter 27: Sorting Networks
27.1 Comparison networks
27.2 The zero-one principle
27.3 A bitonic sorting network
27.4 A merging network
27.5 A sorting network
Chapter notes
Chapter 28: Matrix Operations
28.1 Properties of matrices
28.2 Strassen''s algorithm for matrix multiplication
28.3 Solving systems of linear equations
28.4 Inverting matrices
28.5 Symmetric positive-definite matrices and least-squares approximation
Chapter notes
Chapter 29: Linear Programming
General linear programs
An overview of linear programming
Applications of linear programming
Algorithms for linear programming
29.1 Standard and slack forms
29.2 Formulating problems as linear programs
29.3 The simplex algorithm
29.4 Duality
29.5 The initial basic feasible solution
Chapter notes
Chapter 30: Polynomials and the FFT
Chapter outline
30.1 Representation of polynomials
30.2 The DFT and FFT
30.3 Efficient FFT implementations
Chapter notes
Chapter 31: Number-Theoretic Algorithms
31.1 Elementary number-theoretic notions
31.2 Greatest common divisor
31.3 Modular arithmetic
31.4 Solving modular linear equations
31.5 The Chinese remainder theorem
31.6 Powers of an element
31.7 The RSA public-key cryptosystem
31.8 Primality testing
31.9 Integer factorization
Chapter notes
Chapter 32: String Matching
Notation and terminology
32.1 The naive string-matching algorithm
32.2 The Rabin-Karp algorithm
32.3 String matching with finite automata
32.4 The Knuth-Morris-Pratt algorithm
Chapter notes
Chapter 33: Computational Geometry
33.1 Line-segment properties
33.2 Determining whether any pair of segments intersects
33.3 Finding the convex hull
33.4 Finding the closest pair of points
Chapter notes
Chapter 34: NP-Completeness
NP-completeness and the classes P and NP
Overview of showing problems to be NP-complete
Decision problems vs. optimization problems
Chapter outline
34.1 Polynomial time
34.2 Polynomial-time verification
34.3 NP-completeness and reducibility
34.4 NP-completeness proofs
34.5 NP-complete problems
Chapter notes
Chapter 35: Approximation Algorithms
Chapter outline
35.1 The vertex-cover problem
35.2 The traveling-salesman problem
35.3 The set-covering problem
35.4 Randomization and linear programming
35.5 The subset-sum problem
Chapter notes
Part VIII: Appendix: Mathematical Background
Appendix A: Summations
A.1 Summation formulas and properties
A.2 Bounding summations
Chapter notes
Appendix B: Sets, Etc.
B.2 Relations
B.3 Functions
B.4 Graphs
B.5 Trees
Chapter notes
Appendix C: Counting and Probability
C.2 Probability
C.3 Discrete random variables
C.4 The geometric and binomial distributions
C.5 The tails of the binomial distribution
Chapter notes
Bibliography
Index
Index_A
Index_B
Index_C
Index_D
Index_E
Index_F
Index_G
Index_H
Index_I
Index_J
Index_K
Index_L
Index_M
Index_N
Index_O
Index_P
Index_Q
Index_R
Index_S
Index_T
Index_U
Index_V
Index_W
Index_Y
Index_Z
List of Figures
List of Corollaries
List of Problems
List of Exercises
توضیحات
افزودن یادداشت جدید