Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] - نسخه متنی

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید










Chapter 4: Recurrences



Overview



As noted in Section 2.3.2, when an algorithm contains a recursive call to itself, its running time can often be described by a recurrence. A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs. For example, we saw in Section 2.3.2 that the worst-case running time T (n) of the MERGE-SORT procedure could be described by the recurrence






(4.1)

whose solution was claimed to be T (n) = Θ(n lg n).

This chapter offers three methods for solving recurrences-that is, for obtaining asymptotic "Θ" or "O" bounds on the solution. In the substitution method, we guess a bound and then use mathematical induction to prove our guess correct. The recursion-tree method converts the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion; we use techniques for bounding summations to solve the recurrence. The master method provides bounds for recurrences of the form

T (n) = aT (n/b) + f (n),

where a 1, b > 1, and f (n) is a given function; it requires memorization of three cases, but once you do that, determining asymptotic bounds for many simple recurrences is easy.



/ 292