Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Introduction To Algorithms 2Nd Edition Incl Exercises Edition [Electronic resources] - نسخه متنی

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید



Chapter notes


R. Bellman began the systematic study of dynamic programming in 1955. The word "programming," both here and in linear programming, refers to the use of a tabular solution method. Although optimization techniques incorporating elements of dynamic programming were known earlier, Bellman provided the area with a solid mathematical basis [34].

Hu and Shing [159, 160] give an O(n lg n)-time algorithm for the matrix-chain multiplication problem.

The O(mn)-time algorithm for the longest-common-subsequence problem appears to be a folk algorithm. Knuth [63] posed the question of whether subquadratic algorithms for the LCS problem exist. Masek and Paterson [212] answered this question in the affirmative by giving an algorithm that runs in O(mn/ lg n) time, where n m and the sequences are drawn from a set of bounded size. For the special case in which no element appears more than once in an input sequence, Szymanski [288] shows that the problem can be solved in O((n + m) lg(n + m)) time. Many of these results extend to the problem of computing string edit distances (Problem 15-3).

An early paper on variable-length binary encodings by Gilbert and Moore [114] had applications to constructing optimal binary search trees for the case in which all probabilities pi are 0; this paper contains an O(n3)-time algorithm. Aho, Hopcroft, and Ullman [5] present the algorithm from Section 15.5. Exercise 15.5-4 is due to Knuth [184]. Hu and Tucker [161] devised an algorithm for the case in which all probabilities pi are 0 that uses O(n2) time and O(n) space; subsequently, Knuth [185] reduced the time to O(n lg n).

/ 292