Rules.of.Play.Game.Design.Fundamentals [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Rules.of.Play.Game.Design.Fundamentals [Electronic resources] - نسخه متنی

Katie Salen, Eric Zimmerman

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید





Four Kinds of Systems


Before moving into a discussion of complexity and games, let us take stock. We have looked at several examples of systems, some of them complex and some of them not. How do these differing degrees of complexity relate to each other? Christopher Langton, pioneering mathematician of artificial life, provides four ways of understanding the level of complexity of a system.[4]

Each category in the chart refers to a different degree of com plexity that can appear in a system




  • On the far left are fixed systems that remain unchanging.hand, a screen that is full of random static would be completely The relationships between their elements are always the chaotic, with the color of a dot at one moment having nothing same. The black, unchanging TV screen is a good image for this kind of system.



  • To the right of fixed systems in the chart are periodic ones. Periodic systems are simple systems that repeat the same patterns endlessly. The simple two-building version of the messenger system, where a single messenger oscillates back and forth, is a periodic system.



  • On the far right of the chart are chaotic systems. In a chaotic system, the elements are constantly in motion, but their states and relationships are random, like a TV screen full of static.



  • The final category is the one that interests us the most: complex systems. These systems are more complicated and unpredictable than a periodic system, but not so full of dynamic relationships that they end up as a chaotic haze of static.



Considering all of the possible kinds of systems that might exist, complex systems inhabit a narrow band. The conditions that allow a complex system to exist are something like the conditions that allow a planet to support life: among all of the planets that exist in the universe, only a small subset have the right combination of temperature, atmosphere, and chemical composition to allow life to emerge. What are the special conditions that allow systems to become complex, especially in the case of games?

[4]Christopher Langton, Artificial Life: An Overview (Cambridge: MIT Press, 1995), p. 112.



/ 403