Rules.of.Play.Game.Design.Fundamentals [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Rules.of.Play.Game.Design.Fundamentals [Electronic resources] - نسخه متنی

Katie Salen, Eric Zimmerman

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید





Bottom-Up Behaviors


The striking thing about The Game of Life is that its coupled and context-dependent interactions emerge from a very simple set of rules. Look at how simply we can summarize the behavior of the cells:



  • A living cell will be alive in the next generation if two or three of its neighbors are alive.



  • A dead cell will be alive in the next generation if three of its neighbors are alive.



  • Otherwise, a cell will be dead.



The fact that these simple rules can produce everything from glider guns to working calculators is astonishing. Glider guns are nowhere described in the three rules listed above. But paradoxically, they do exist in the space of possibility defined by the three rules. All of the possible patterns of cells, all of the virtual machines that have ever been built on the Life grid, all of the many forms of "life" that have been discovered in The Game of Life exist somehow, embedded within those three rules.

Life demonstrates how, within emergent systems, simple local interactions lead to larger, more complex patterns. Complexity theorists often use the phrase bottom-up to summarize this phenomenon. Theorist Steven Johnson describes the bottom-up processes in systems such as ant colonies, urban spaces, and adaptive software:

What features do all these systems share?… They are bottom-up systems, not top-down. They get their smarts from below.… In these systems, agents residing on one scale start producing behavior that lies one scale above them: ants create colonies; urbanites create neighborhoods; simple pattern-recognition software learns how to recommend new books. The movement from low-level rules to higher-level sophistication is what we call emergence.[7]

In addition to the kinds of systems Johnson describes, there is another important class of system where bottom-up emergence occurs: games. Games generate complex emergent behavior, as the formal structures of rules facilitate the unpredictable experience of play. Like the possibility of glider guns contained in the rules of Life, all of the Baseball games that have ever been played, all of the strategies for winning, all of the team and player statistics that the game has produced, are somewhere contained within the rules of Baseball.

Bottom-up emergence is intrinsic to games and is not limited to the formal complexities of a game. Emergence occurs in different ways on the level of rules, play, or culture in any game. We are focusing in this chapter on the formal properties of emergence, but in a sense the rest of this book continues the trajectory we begin here, examining the many ways that meaningful play can emerge from a game.

[7]Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software (New York: Scribner, 2001), p. 18.



/ 403