Rules.of.Play.Game.Design.Fundamentals [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Rules.of.Play.Game.Design.Fundamentals [Electronic resources] - نسخه متنی

Katie Salen, Eric Zimmerman

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید





Framing Systems


Even though we were talking about the same game each time, as we proceeded from a formal to an experiential to a cultural analysis, our sense of what we considered as part of the system grew. In fact, each analysis integrated the previous system into itself. The hierarchical nature of complex systems makes this integration possible.

Because of the hierarchical nature of the critical or complex system, with interactions over all scales, we can arbitrarily define what we mean by a unit: In a biological system, one can choose either a single cell, a single individual, such as an ant, the ant's nest, or the ant as a species, as the adaptive unit.In a human social system, one might choose an individual, a family, a company, or a country as the unit. No unit at any level has the right to claim priority status. [3]

In a game system, as in a human social system or biological system, hierarchies and interactions are scalable and embedded, as complexity theorist Per Bak points out in the quote above. Although no single framing has an inherent priority, there are specific relationships among the kinds of framings given here. The formal system constituting the rules of a game are embedded in its system of play. Likewise, the system of play is embedded in the cultural framing of the game. For example, understanding the cultural connotations of the visual design of a game piece still should take into account the game's rules and play: the relative importance of the pieces and how they are actually used in a game. For example, answering a cultural question regarding the politics of racial representation would have to include an understanding of the formal way the core rules of the game reference color. What does it mean that white always moves first?

Similarly, when you are designing a game you are not designing just a set of rules, but a set of rules that will always be experienced as play within a cultural context. As a result, you never have the luxury of completely forgetting about context when you are focusing on experience, or on experience and culture when you're focusing on the game's formal structure. It can be useful at times to limit the number of ways you are framing the game, but it is important to remember that a game's formal, experiential, and cultural qualities always exist as integrated phenomena.







The History of Systems


The formal use of systems as a methodology for study has a rich history, which we can only quickly outline here. Many of the ideas surrounding systems and systems theory come from Ludwig von Bertalanffy's 1928 graduate thesis, in which he describes organisms as living systems. By 1969, von Bertalanffy had formalized his approach in the book General Systems Theory: Foundations, Development, Applications. Von Bertalanffy proposed a systems-based approach to looking at radically different kinds of phenomena, from the movement of particles to the cellular structures of organisms to the organization of a society. Von Bertalanffy's book called for a single integrated science of systems that acknowledged the linkages between the way systems operate across radically varying scales. Bertalanffy's systems-based approach contributed to the development of the fields of information theory, game theory, and cybernetics; each of these fields, in turn, contributed to contemporary concepts of computer science.

Although formal systems theory is no longer in common use today, sys-tems-based approaches have given rise to a variety of interdisciplinary fields, including studies of complexity, chaos, and artificial life. Scholars come to these fields from a wide array of disciplines, including mathematics, genetics, physics, biology, sociology, and economics. We will be only be touching on their work here, but if these systems-based investigations interest you, additional references can be found in the suggested readings for chapter 14, Games as Emergent Systems.











[3]Per Bak, "Self-Organized Criticality: A Holistic View of Nature." In Complexity: Metaphors, Models and Reality, edited by George A. Cowan, David Pine, and David Meltzer (Cambridge: Perseus Books, 1994), p. 492.



/ 403