Rules.of.Play.Game.Design.Fundamentals [Electronic resources] نسخه متنی

اینجــــا یک کتابخانه دیجیتالی است

با بیش از 100000 منبع الکترونیکی رایگان به زبان فارسی ، عربی و انگلیسی

Rules.of.Play.Game.Design.Fundamentals [Electronic resources] - نسخه متنی

Katie Salen, Eric Zimmerman

| نمايش فراداده ، افزودن یک نقد و بررسی
افزودن به کتابخانه شخصی
ارسال به دوستان
جستجو در متن کتاب
بیشتر
تنظیمات قلم

فونت

اندازه قلم

+ - پیش فرض

حالت نمایش

روز نیمروز شب
جستجو در لغت نامه
بیشتر
لیست موضوعات
توضیحات
افزودن یادداشت جدید





Feedback Systems in Games


How do feedback systems operate in games? As a cybernetic system, the rules of a game define the sensors, comparators, and activators of the game's feedback loops. Within a game, there are many sub-systems that regulate the flow of play, dynamically changing and transforming game elements. Do you want your game to move toward a balanced, steady state? Or do you want it to spin wildly toward one extreme or another? Designing feedback loops within your game can help you shape these tendencies. Feedback loops can be tricky to grasp, but they offer a crucial way of understanding how formal game systems function.

Game designer Marc LeBlanc has done a great deal of thinking about the relationship between game design and feedback systems, and this schema is indebted to LeBlanc's important work on the subject. In 1999, LeBlanc gave a presentation at the Game Developer's Conference,titled "[2] Feedback Systems and the Dramatic Structure of Competition." In this lecture, LeBlanc proposed a way of thinking about games as feedback systems, summarized in the following chart:


In this model, the game state represents the current condition of the game at any given moment. In a Chess game, for example, the game state is represented by the arrangement of the pieces on the board, the captured pieces, and which player is about to move next. In a console fighting game such as Virtua Fighter 4, the game state includes which two combatants were chosen, the health and other fixed and variable stats of the two fighters, their relative spatial positions, and the arena in which they are fighting. The game state is a formal way of understanding the current status of the game, and does not take into account the skills, emotions, and experience of the players. Of course, these player-based factors will definitely affect the game state. If you are a masterful Virtua Fighter 4 player and your opponent is not, this will be evident in the play of the game. However, the game state itself refers only to the formal, internal condition of the game.

The other elements of LeBlanc's model correspond directly to the components of a cybernetic system as we have discussed them. The scoring function is the system's sensor that measures some aspect of the game state. The controller is the comparator, which looks at the sensor's reading and makes the decision whether or not to take action. The game mechanical bias is the activator, a game event or set of events that can be turned on or off depending on the decision of the comparator.

When looking at games as cybernetic systems, it is important to note that we are not necessarily considering the entire game as a single feedback system. Instead, our emphasis is on the ways that cybernetic systems are embedded in games. Embedded cybernetic systems affect a single aspect of a larger game, such as determining which player goes first next round or the relative speed of players in a race. We know from our study of systems that all parts of a game are interrelated in some way. A cybernetic system within a game that directly affects just one component of a game will indirectly affect the game as a whole.

[2]Marc LeBlanc, presentation at Game Developer's Conference, 1999.



/ 403