Racing Loops
Positive Feedback Basketball and Negative Feedback Basketball were variations on the game of Basketball. But many existing games already make use of feedback systems in their designs. Here, we look at the use of cybernetic systems in two digital racing games.
Wipeout is a science-fiction racing game originally released for the Playstation, in which the player pilots a fast-moving hover vehicle around a track, trying to beat the computer-controlled vehicles and come in first place. It is common in racing games such as Wipeout for the program to employ feedback mechanisms. Obviously, a computer program can drive a vehicle as poorly or as skillfully as the game designer wants. It would be simple to program the computer-driven cars so that they drove in a mathematically optimal fashion and always beat the player. However, that would simply not be fun. Instead, in racing games the computer vehicles are programmed to drive in a less than "perfect" manner, sometimes not steering or accelerating efficiently, in order to provide a challenge that a human player can overcome.

Wipeout
One way to create a scaled challenge for the player would be to program different skill levels for the computer-controlled vehicles. Some vehicles would be easy for a beginner to beat whereas others could only be bested by experienced players. Programming a static skill level for each opponent vehicle, however, is not yet a cybernetic feedback loop. Why would we want to add a feedback system to a racing game? In order to keep the flow of play exciting, of course. Part of the fun of a racing game such as Wipeout is jockeying for position among a dense cluster of hover vehicles, battling for first place with another racer who is hot on your tail or dead ahead in your sights. Without a feedback loop, these moments are unlikely to occur. What if a player crashes early in a race—will she ever catch up to the computer-controlled vehicles? Or what if a player's skill far outmatches the pre-programmed computer opponents? Once she gains a lead early in the race, she might as well be racing alone, because the computer opponents will never catch up to her. This is precisely why Wipeout (and many other digital racing games) make use of cybernetic feedback systems to control the speed of the computer opponents. There are two general rules we can abstract from the behavior of the computer-con-trolled vehicles in the game. Although these are not the only factors determining their speed, they do have a clear impact on the experience of the game:
If the human player is in first place, the vehicle in second place will accelerate and catch up to the human player's vehicle.
If the human player is in last place, the last few vehicles will slow down to let the player catch up to them.
The result of these two rules is a negative feedback system. Like Negative Feedback Basketball, together these two rules operate to reduce the distance between vehicles in the game, eliminating the "extremes" of the player being very far ahead or very far behind the computer opponents. In this system, there are three states that the comparator needs to monitor: when the player is in first place, when the player is in last place, or when the player is in neither first nor last place. If the player is somewhere in the middle of the pack, then no special activator event comes into play. But if the player is in first or last place, vehicle behavior adjusts accordingly. The outcome of this feedback system is that racing in Wipeout tends to offer exciting and satisfying play. Significantly, Wipeout only affects the computer-opponent vehicles, not the hovercraft that the player is driving. In essence, the program carefully adjusts the competitive backdrop, rather than boosting or handicapping the player directly. However, there are games that apply a negative feedback system more directly to a player's abilities.
One example of such a game is Super Monkey Ball for the Nintendo GameCube. Super Monkey Ball contains several different game modes; one of them is a racing game in which up to four players simultaneously race monkey characters through a series of tracks.When players drive through a power-up object on the track, they gain a special power that can be used one time. These powers range from forward-firing attacks (shoot a bomb at another player ahead of you) to rear-based attacks (drop a banana peel, hoping a player behind you will run over it and slip) to non-attack powers (a speed-up that temporarily boosts a player's velocity).

Super Monkey Ball
Whereas many racing games use this power-up convention (including Wipeout), Super Monkey Ball uses a feedback system to determine which power-up a player will receive, depending on whether the player is ahead or behind other players. If a player is in last place, the player is much more likely to receive the speed-up power, which will help that player catch up to the other competitors. On the other hand, a player in first place is more likely to get forward-firing attacks, rather than speed-ups or rear-based attacks.The lead player thus receives the least useful kind of power-up: a player in first place can't use a forward-fir-ing attack to better his position, because no one is ahead of him. These rules add up to a negative feedback system. As with Wipeout, Super Monkey Ball's feedback loops encourage a close race, in which no player is too far ahead of or behind the others.

Powerstone
In Super Monkey Ball and Wipeout, negative feedback loops are used to engender meaningful play. As we know from Games as Systems of Uncertainty, the outcome of a game needs to be uncertain for meaningful play to occur. If, as a player, you fall so far behind or ahead of the other players that the outcome is a foregone conclusion, meaningful play is diminished, because decisions you make won't have an impact on the outcome of the game.This does not mean that feedback systems guarantee a close race every time: skill plays an important role in racing games, and it is possible for a player in Super Monkey Ball to fall so far behind that there is very little chance of victory. There is no universal strategy for crafting meaningful play. But in Wipeout and Super Monkey Ball, feedback systems support meaningful play by making the game responsive to the ongoing state of the game.